
Circuits Problem Set

9.1)

When examining signal transmission in parallel conductors, we must consider the electromagnetic coupling 
that occurs between them. In twisted pair cables, the twisting pattern serves a critical function beyond 
simple mechanical stability.

  The fundamental principle at work is that of mutual inductance between parallel conductors. When 
current flows in opposite directions through parallel wires, a magnetic field is generated between them. This 
field can induce unwanted signals,a phenomenon known as crosstalk.

  By twisting the pairs, each small segment of wire experiences an equal but opposite electromagnetic 
influence from adjacent segments, effectively canceling out external interference. This creates an effect 
similar to a Faraday cage, where electromagnetic fields are contained and controlled.

The shielding that often surrounds these twisted pairs serves two complementary purposes:

� It creates a barrier against external electromagnetic interference and radio frequency interference.

� It prevents internal electromagnetic signals from radiating outward and potentially interfering with
nearby sensitive electronic systems

  This dual protection is particularly important in environments with multiple signal-carrying cables or 
where electromagnetic compatibility is critical.

9.2)
              
               
        
  The skin depth can be derived from Maxwell’s equations by examining how electromagnetic waves prop- 

agate in conductive media. The resulting expression is:

δ =
√

2
ωµσ = 1√

πνµσ

Where:

� ν represents frequency (Hz)

� µ represents magnetic permeability (H/m)

� σ represents electrical conductivity (S/m)

For our specific case with salt water having conductivity of approximately 4 S/m at a frequency of 104

Hz:
δ = 1√

π·104 Hz·4π·10−7 H/m·4 S/m

The magnetic permeability term 4π · 10−7 represents µ0, the permeability of free space.
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Evaluating this expression: δ = 1  2 52 mm√
π·104·4π·10−7·4 

.

                
             
         

9.3) 

⃗The Poynting vector P represents the directional energy flux density of an electromagnetic field. It is defined
⃗ ⃗as the cross product of the electric field E and the magnetic field H:

⃗ ⃗ ⃗P = E × H
  For a coaxial cable, we can analyze this in cylindrical coordinates. The electric field points radially 

outward from the center conductor, while the magnetic field forms concentric circles around it.
In a coaxial geometry with inner radius r1 and outer radius r2, the electric field at a distance r from the

⃗ V ˆcenter is: E = rr ln(r2/r1)

⃗ ˆIThe magnetic field at the same point is: H = 2πr ϕ

Taking their cross product: P⃗ = V
r ln(r2/r1)

r̂ × I
2πr ϕ̂ = V I

2πr2 ln(r2/r1)
ẑ

To find the total power flowing through the cable, we integrate over the cross-sectional area: P =∫∫
cross-section

P⃗ · dA⃗ =
∫ 2π

0

∫ r2
r1

V I
2πr2 ln(r2/r1)

rdrdθ

Simplifying: P = V I
ln(r2/r1)

∫ r2
r1

1
rdr = V I

ln(r2/r1)
ln
(

r2
r1

)
= V I

                
              

9.4)

The characteristic impedance of a transmission line represents the ratio of voltage to current for a wave 
propagating along the line. For a transmission line consisting of two parallel conductors with width w and 
separation h, we need to analyze the electromagnetic fields.

Starting with the relationship between impedance, inductance, and capacitance: Z =
√

L
C

Where L is the inductance per unit length and C is the capacitance per unit length.
For parallel conductors, we can determine the magnetic field using Ampere’s law. A current I flowing

through a conductor creates a magnetic field:
∮
B⃗ · d⃗l = µ0I

For a uniform magnetic field between the conductors: B = µ0I
h

The magnetic flux linking the conductors is: Φ =
∫
B⃗ · dA⃗ = µ0

I
h · h = µ0I

Therefore, the inductance per unit length is: L = Φ
I = µ0h

w

For the capacitance, we use the relationship between electric field and potential: V =
∫
E⃗ · ds⃗

For a uniform electric field between parallel plates: E = V
h

The capacitance per unit length is: C = Q
V = ε0εrw

h

Substituting these expressions into the impedance formula: Z =
√

L
C =

√
µ0h/w
ε0εrw/h =

√
µ0h2

ε0εrw2 = h
w

√
µ0

ε0εr

The wave velocity can be determined from: v = 1 = 1 = c√
LC 

√
µ0ε0εr 

√
εr

  Where c is the speed of light in vacuum. This shows that the wave propagates at a fraction of the speed 
of light, determined by the relative permittivity of the medium.

9.5) 

9.5a)   

For a coaxial cable with inner radius r1, outer radius r2, and dielectric with relative permittivity εr, the 
characteristic impedance is:
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Z = 1
2π

√
µ0

ε0εr
ln
(

r2
r1

)
Given:

� εr = 2.26

� r1 = 0.406 mm

� r2 = 1.48 mm

Substituting these values:

Z = 1
2π

√
4π×10−7

8.854×10−12×2.26 ln
(

1.48
0.406

)
Z = 1

2π

√
4π×10−7

2.001×10−11 ln(3.645)

Z = 1
2π × 120π × 0.377 51.6Ω

9.5b)

The velocity of wave propagation in the coaxial cable is:
v = 1√

µ0ε0εr
= c√

εr

Where c is the speed of light in vacuum (3× 108 m/s).

v = 3×108 1.99× 108 m/s√
2.26

This represents approximately 66% of the speed of light in vacuum, demonstrating how the dielectric
material slows electromagnetic wave propagation.

9.5c)   

For a signal traveling at velocity v during time t, the distance covered is:
d = v × t = 1.99 × 108 m/s × 1 × 10−9 s = 0.199 m

                 
             
    

9.5d)      

To maintain the same characteristic impedance with a different outer radius, the ratio r2/r1 must remain 
constant.

 

Given that r2 = 20 mil in the new configuration:
1.48 20 mil=0.406 r1

20 milr1 =  5 23 mil3 645 .
                 

9.5e) 

The relationship between wavelength λ, frequency f , and wave velocity v is:
λ = v

f
Rearranging to find frequency:

f = v
λ = 1.99×108 m/s

1.48×10−2 m 1.346× 1010 Hz = 13.46 GHz
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9.6b) 

When a transmission line with characteristic impedance Z0 is connected to a load with impedance ZL, the 
reflection coefficient Γ quantifies how much of the incident signal is reflected back:

Z ZΓ = L− 0

ZL+Z0

In our scenario, the source impedance is mismatched with the effective load impedance by a factor of 2:
Z0 = 51.6Ω and ZL = 25.8Ω

Calculating the reflection coefficient:
Γ = 25.8−51.6

25.8+51.6 = −25.8
77.4 = − 1
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The negative sign indicates a phase reversal in the reflected wave. The magnitude |Γ| = 1
3 means that

one-third of the incident signal power is reflected back due to the impedance mismatch.
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